Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insights Imaging ; 15(1): 33, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315274

RESUMO

OBJECTIVES: Diagnostic imaging plays an important role in the pre-treatment workup of knee osteoarthritis (OA) and rheumatoid arthritis (RA). Herein, we identified a useful MRI sign of infrapatellar fat pad (IPFP) to improve diagnosis. METHODS: Eighty-one age- and sex-matched RA and OA patients each, with pathological diagnosis and pre-treatment MRI were retrospectively evaluated. All randomized MR images were blinded and independently reviewed by two radiologists. The assessment process included initial diagnosis, sign evaluation, and final diagnosis, with a 3-week interval between each assessment. Broken-fat pad (BFP) sign was assessed on sagittal T2-weighted-imaging in routine MRI. The area under the curve and Cohen's kappa (κ) were used to assess the classification performance. Two shape features were extracted from IPFP for quantitative interpretation. RESULTS: The median age of the study population was 57.6 years (range: 31.0-78.0 years). The BFP sign was detected more frequently in patients with RA (72.8%) than those with OA (21.0%). Both radiologists achieved better performance by referring to the BFP sign, with accuracies increasing from 58.0 to 75.9% and 72.8 to 79.6%, respectively. The inter-reader correlation coefficient showed an increase from fair (κ = 0.30) to substantial (κ = 0.75) upon the consideration of the BFP sign. For quantitative analysis, the IPFP of RA had significantly lower sphericity (0.54 ± 0.04 vs. 0.59 ± 0.03, p < 0.01). Despite larger surface-volume-ratio of RA (0.38 ± 0.05 vs. 0.37 ± 0.04, p = 0.25) than that of OA, there was no statistical difference. CONCLUSIONS: The BFP sign is a potentially important diagnostic clue for differentiating RA from OA with routine MRI and reducing misdiagnosis. CRITICAL RELEVANCE STATEMENT: With the simple and feasible broken-fat pad sign, clinicians can help more patients with early accurate diagnosis and proper treatment, which may be a valuable addition to the diagnostic workup of knee MRI assessment. KEY POINTS: • Detailed identification of infrapatellar fat pad alterations of patients may be currently ignored in routine evaluation. • Broken-fat pad sign is helpful for differentiating rheumatoid arthritis and osteoarthritis. • The quantitative shape features of the infrapatellar fat pad may provide a possible explanation of the signs. • This sign has good inter-reader agreements and is feasible for clinical application.

2.
Chemosphere ; 346: 140631, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939922

RESUMO

Growing mechanization has released higher concentrations of toxic metals in water and sediment, which is a critical concern for the environment and human health. Recent studies show that naturally occurring and synthetic iron sulfide particles are efficient at removing these hazardous pollutants. This review seeks to provide a concise summary of the evolution in the production of iron sulfide particles, specifically nanoparticles, through the years. This review presents an outline of the synthesis process for the most dominant forms of iron sulfide: mackinawite (FeS), pyrite (FeS2), pyrrhotite (Fe1-x S), and greigite (Fe3S4). The review confirms that both natural forms of iron sulfide and modified forms of iron sulfide are highly effective at removing different heavy metals and metalloids from water. Concurrently, this review reveals the interaction mechanism between toxic metals and iron sulfide, along with the impact of conditions for remedy and rectification. None the less, modifications and future investigations into the synthesis of novel iron sulfides, their use to adsorb diverse environmental pollutants, and their fate after injection into polluted aquifers, remain crucial to maximizing pollution control.


Assuntos
Compostos Ferrosos , Metais Pesados , Humanos , Sulfetos , Água
3.
Arthritis Res Ther ; 25(1): 227, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001465

RESUMO

BACKGROUND: Identifying axial spondyloarthritis (axSpA) activity early and accurately is essential for treating physicians to adjust treatment plans and guide clinical decisions promptly. The current literature is mostly focused on axSpA diagnosis, and there has been thus far, no study that reported the use of a radiomics approach for differentiating axSpA disease activity. In this study, the aim was to develop a radiomics model for differentiating active from non-active axSpA based on fat-suppressed (FS) T2-weighted (T2w) magnetic resonance imaging (MRI) of sacroiliac joints. METHODS: This retrospective study included 109 patients diagnosed with non-active axSpA (n = 68) and active axSpA (n = 41); patients were divided into training and testing cohorts at a ratio of 8:2. Radiomics features were extracted from 3.0 T sacroiliac MRI using two different heterogeneous regions of interest (ROIs, Circle and Facet). Various methods were used to select relevant and robust features, and different classifiers were used to build Circle-based, Facet-based, and a fusion prediction model. Their performance was compared using various statistical parameters. p < 0.05 is considered statistically significant. RESULTS: For both Circle- and Facet-based models, 2284 radiomics features were extracted. The combined fusion ROI model accurately differentiated between active and non-active axSpA, with high accuracy (0.90 vs.0.81), sensitivity (0.90 vs. 0.75), and specificity (0.90 vs. 0.85) in both training and testing cohorts. CONCLUSION: The multi-ROI fusion radiomics model developed in this study differentiated between active and non-active axSpA using sacroiliac FS T2w-MRI. The results suggest MRI-based radiomics of the SIJ can distinguish axSpA activity, which can improve the therapeutic result and patient prognosis. To our knowledge, this is the only study in the literature that used a radiomics approach to determine axSpA activity.


Assuntos
Espondiloartrite Axial , Espondilartrite , Humanos , Espondilartrite/tratamento farmacológico , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Articulação Sacroilíaca/diagnóstico por imagem , Articulação Sacroilíaca/patologia
4.
Eur Radiol ; 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37932390

RESUMO

OBJECTIVE: To investigate the potential applicability of AI-assisted compressed sensing (ACS) in knee MRI to enhance and optimize the scanning process. METHODS: Volunteers and patients with sports-related injuries underwent prospective MRI scans with a range of acceleration techniques. The volunteers were subjected to varied ACS acceleration levels to ascertain the most effective level. Patients underwent scans at the determined optimal 3D-ACS acceleration level, and 3D compressed sensing (CS) and 2D parallel acquisition technology (PAT) scans were performed. The resultant 3D-ACS images underwent 3.5 mm/2.0 mm multiplanar reconstruction (MPR). Experienced radiologists evaluated and compared the quality of images obtained by 3D-ACS-MRI and 3D-CS-MRI, 3.5 mm/2.0 mm MPR and 2D-PAT-MRI, diagnosed diseases, and compared the results with the arthroscopic findings. The diagnostic agreement was evaluated using Cohen's kappa correlation coefficient, and both absolute and relative evaluation methods were utilized for objective assessment. RESULTS: The study involved 15 volunteers and 53 patients. An acceleration factor of 10.69 × was identified as optimal. The quality evaluation showed that 3D-ACS provided poorer bone structure visualization, and improved cartilage visualization and less satisfactory axial images with 3.5 mm/2.0 mm MPR than 2D-PAT. In terms of objective evaluation, the relative evaluation yielded satisfactory results across different groups, while the absolute evaluation revealed significant variances in most features. Nevertheless, high levels of diagnostic agreement (κ: 0.81-0.94) and accuracy (0.83-0.98) were observed across all diagnoses. CONCLUSION: ACS technology presents significant potential as a replacement for traditional CS in 3D-MRI knee scans, allowing thinner MPRs and markedly faster scans without sacrificing diagnostic accuracy. CLINICAL RELEVANCE STATEMENT: 3D-ACS-MRI of the knee can be completed in the 160 s with good diagnostic consistency and image quality. 3D-MRI-MPR can replace 2D-MRI and reconstruct images with thinner slices, which helps to optimize the current MRI examination process and shorten scanning time. KEY POINTS: • AI-assisted compressed sensing technology can reduce knee MRI scan time by over 50%. • 3D AI-assisted compressed sensing MRI and related multiplanar reconstruction can replace traditional accelerated MRI and yield thinner 2D multiplanar reconstructions. • Successful application of 3D AI-assisted compressed sensing MRI can help optimize the current knee MRI process.

5.
J Colloid Interface Sci ; 623: 762-774, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35636286

RESUMO

Chemical functionalization provides effective protocols for inorganic nanomaterials as oil-dispersible lubricant additives. Nevertheless, harsh reaction conditions and arduous post-processing are frequently encountered when adopting this approach. Herein, four types of carbonized polymer dots (CPDs) with admirable dispersibility and long-term stability (more than 6 months without any sediments) in polyethylene glycol (PEG200) were synthesized by a one-step and green solvothermal route using saccharides as the single precursors. The tribological behaviors of CPDs as the lubricant additives of PEG200 were systematically evaluated and compared, confirming that the anti-wear and friction-reducing performances of PEG200 can be effectively enhanced after blended with CPDs. Clarified by the friction evaluations and worn surface detections, the superior lubricity and durability of CPDs-c are mainly attributed to the synergy between the interfacial adsorption of polymeric shells, the nano-lubrication effects of carbon cores, and the establishment of CPDs-inserted tribofilm with a uniform thickness of about 86 nm. This work explores a green and facile strategy for synthesizing the CPDs toward oil lubrication and reveals the lubrication mechanism of CPDs, which facilitates the practical application of CPDs in tribology.


Assuntos
Lubrificantes , Polímeros , Excipientes , Lubrificação , Polietilenoglicóis
6.
J Hazard Mater ; 431: 128592, 2022 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-35247740

RESUMO

In this study, ß-Cyclodextrin (CD) modified Fe3S4 nanomaterials were synthesized by a one-step facile strategy and investigated for the removal of Cr(VI). The resulted CD-Fe3S4 exhibited enhanced removal efficiency toward Cr(VI) than bared Fe3S4 with a maximum capacity of 220.26 mg·g-1 as the molar ratio of CD-to-Fe3S4 at 0.2. The effective performance of CD-Fe3S4 toward Cr(VI) could well maintain under oxic conditions and a wide pH range of aqueous solution. A high selectivity for Cr(VI) was achieved in the presence of coexisting cations and anions. More significantly, a single treatment step of CD-Fe3S4 effectively removed chromium from actual electroplating wastewater to the detection limit of 0.004 mg·L-1 that far below the WHO limitation of Cr (VI) (<0.05 mg·L-1) combing with the rapid magnetic separation without adjusting the pH value of wastewater at 7. The effective removal of Cr (VI) by CD-Fe3S4 involved a complex process of surface adsorption/reduction, and solution homogenous reduction and subsequent sequestration of Cr(III) achieving the effective removal of aqueous total Cr. The superior Cr (VI) removal capability and facial separation of CD-Fe3S4 attained its prominent potential application as an effective material for the Cr(VI) removal.


Assuntos
Poluentes Químicos da Água , beta-Ciclodextrinas , Adsorção , Cromo/análise , Concentração de Íons de Hidrogênio , Ferro , Fenômenos Magnéticos , Sulfetos , Águas Residuárias , Água , Poluentes Químicos da Água/análise
7.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(1): 183-188, 2022 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-35123624

RESUMO

OBJECTIVE: To explore the clinical significance of magnetic resonance imaging water-fat separation (Dixon) technique in patients with multiple myeloma. METHODS: A total of 41 newly diagnosed patients with multiple myeloma who underwent Dixon in The Affiliated Hospital of Qingdao University from April 2019 to April 2021 were included in this study. Patients were divided into observation group and control group according to whether Dixon performance was normal or not. The differences of clinical data and fat fraction (FF) between the two groups were compared. The correlation between FF and clinical data, disease stages and differences before and after treatment were also compared. The receiver operator characteristic curve of patients was drawn to analyze the diagnostic value of FF combined with serum alkaline phosphatase for bone destruction in patients with multiple myeloma. RESULTS: Among the 41 patients, there were 12 cases in the control group and 29 cases in the observation group. There was no significant difference in age and sex between the two groups. In the observation group, ß2-microglobulin concentration and M protein were significantly higher than those in the control group, while serum alkaline phosphatase and FF were lower (P<0.05). In all 41 patients included in the study, there was a significant negative correlation between FF value and ß2-microglobulin concentration (r=-0.57), and a significant positive correlation between FF value and serum alkaline phosphatase (r=0.31). After treatment, FF value increased, while myeloma cell percentage, ß2-microglobulin concentration and M protein decreased in 11 patients who completed 4 cycles of chemotherapy, and the differences before and after treatment were statistically significant (P<0.05). The value of serum alkaline phosphatase combined with FF value in predicting bone destruction is higher than that of FF value or serum alkaline phosphatase alone. CONCLUSION: Dixon's different imaging manifestations can reflect the severity of the disease. FF value is correlated with clinical examination results and R-ISS staging, and there is a significant difference before and after treatment. Serum alkaline phosphatase combined with FF value is better than two indicators alone in predicting bone destruction.


Assuntos
Mieloma Múltiplo , Humanos , Imageamento por Ressonância Magnética , Mieloma Múltiplo/diagnóstico por imagem , Tecnologia , Água
8.
Materials (Basel) ; 15(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35160996

RESUMO

The remediation of water streams, polluted by various substances, is important for realizing a sustainable future. Magnetic adsorbents are promising materials for wastewater treatment. Although numerous techniques have been developed for the preparation of magnetic adsorbents, with effective adsorption performance, reviews that focus on the synthesis methods of magnetic adsorbents for wastewater treatment and their material structures have not been reported. In this review, advancements in the synthesis methods of magnetic adsorbents for the removal of substances from water streams has been comprehensively summarized and discussed. Generally, the synthesis methods are categorized into five groups, as follows: direct use of magnetic particles as adsorbents, attachment of pre-prepared adsorbents and pre-prepared magnetic particles, synthesis of magnetic particles on pre-prepared adsorbents, synthesis of adsorbents on preprepared magnetic particles, and co-synthesis of adsorbents and magnetic particles. The main improvements in the advanced methods involved making the conventional synthesis a less energy intensive, more efficient, and simpler process, while maintaining or increasing the adsorption performance. The key challenges, such as the enhancement of the adsorption performance of materials and the design of sophisticated material structures, are discussed as well.

9.
J Magn Reson Imaging ; 53(6): 1683-1696, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33604955

RESUMO

BACKGROUND: Preoperative prediction of soft tissue sarcoma (STS) grade is important for treatment decisions. Therefore, formulation an STS grade model is strongly needed. PURPOSE: To develop and test an magnetic resonance imaging (MRI)-based radiomics nomogram for predicting the grade of STS (low-grade vs. high grade). STUDY TYPE: Retrospective POPULATION: One hundred and eighty patients with STS confirmed by pathologic results at two independent institutions were enrolled (training set, N = 109; external validation set, N = 71). FIELD STRENGTH/SEQUENCE: Unenhanced T1-weighted (T1WI) and fat-suppressed T2-weighted images (FS-T2WI) were acquired at 1.5 T and 3.0 T. ASSESSMENT: Clinical-MRI characteristics included age, gender, tumor-node-metastasis (TNM) stage, American Joint Committee on Cancer (AJCC) stage, progression-free survival (PFS), and MRI morphological features (ie, margin). Radiomics feature extraction were performed on T1WI and FS-T2WI images by minimum redundancy maximum relevance (MRMR) method and least absolute shrinkage and selection operator (LASSO) algorithm. The selected features constructed three radiomics signatures models (RS-T1, RS-FST2, and RS-Combined). Univariate and multivariate logistic regression analysis were applied for screening significant risk factors. Radiomics nomogram was constructed by incorporating the radiomics signature and risk factors. STATISTICAL TESTS: Clinical-MRI characteristics were performed by a univariate analysis. Model performances (discrimination, calibration, and clinical usefulness) were validated in the external validation set. The RS-T1 model, RS-FST2 model, and RS-Combined model had an area under curves (AUCs) of 0.645, 0.641, and 0.829, respectively, in the external validation set. The radiomics nomogram, incorporating significant risk factors and the RS-Combined model had AUCs of 0.916 (95%CI, 0.866-0.966, training set) and 0.879 (95%CI, 0.791-0.967, external validation set), and demonstrated good calibration and good clinical utility. DATA CONCLUSION: The proposed noninvasive MRI-based radiomics models showed good performance in differentiating low-grade from high-grade STSs. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 2.


Assuntos
Sarcoma , Neoplasias de Tecidos Moles , Humanos , Imageamento por Ressonância Magnética , Nomogramas , Estudos Retrospectivos , Sarcoma/diagnóstico por imagem , Neoplasias de Tecidos Moles/diagnóstico por imagem
10.
Chemosphere ; 272: 129933, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35534970

RESUMO

It is urgent and essential to remove antimony from wastewater due to its potential carcinogenicity. In this paper, a nano ferric oxide (NFO) adsorbent was synthesized in a one-step low temperature calcination (150 °C) process. It presents a surprising self-acidification behavior, could automatically adjust the pH to around 4 from different intimal pH values (4-9), which enable it to efficiently remove more than 99% of Sb(V) from wastewater in a wide pH range. X-ray photoelectron spectroscopy analysis proved that the self-acidification function was originated from the hydrolyzation of surface Fe atoms on ferric oxide nanoparticles. The maximum adsorption capacity of this adsorbent is 78.1 mg/g which is 2-3 times higher than that of the samples obtained at higher temperatures (250 °C and 350 °C), and also its adsorption kinetic constant is ten times higher, which can be attributed to the larger surface areas and smaller sizes of ferric oxides synthesized at 150 °C. In the actual wastewater treatment, the effluent's concentration after treatment can be maintained below the instrument detection limit even under low initial antimony concentration. We believe that this new adsorbent has great potential in the practical application in the treatment of Sb polluted wastewaters due to its simple synthesis, high efficiency, and low cost.


Assuntos
Antimônio , Poluentes Químicos da Água , Adsorção , Antimônio/química , Compostos Férricos/química , Concentração de Íons de Hidrogênio , Óxidos/química , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...